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Abstract :

In the current study the researchers
attempt to investigate the growth of
the modulation instability and
soliton propagation in the high-
temperature non-collisional
homogeneous plasma. Analytical
relations of nonlinear Schrodinger
equation coefficients are proposed
for phase velocity ranges which are
greater than or equal to light
velocity.

The current findings confirm those
of the study conducted by Wahdain
and Daraigan [2014] when the phase
velocity ranges , 1) exceed the
velocity of light and not even close
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to, and 2) are equal to the velocity
of light [11].

This study has found out that the
modulation instability occurs at all
values of phase velocity that are
greater than or equal to light
velocity, and the growth rate of the
modulation instability reaches it is
maximum value when the phase
velocity ranges are sufficiently close
to the velocity of light.

Keywords: Nonlinear Schrodinger

equation, Relativistic plasma
Instability modulation , Growth
rate.
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Introduction:

The modulation instability of Langmuir waves is based on
nonlinear Schrodinger equation estimated from both Vlasov
relativistic equation and Maxwell equations [8 , 12] by which valid
results are produced at different temperature levels ( high and low ) .
It has been studied by many researchers (such as Wahdain and
Daraigan,2014 ; Kotov et al. 1984 ; Pataraya and Melikidze, 1980 ;
Timofeev, 2013 ; Krafft and Volokitin, 2010 ; Hakimi Pajouh et
al.,2004, among others) .

These studies are limited at the calculation of the effect of
nonlinear interaction to the grow of modulation instability , and the
soliton propagation due to the difficulty of finding the coefficients
integration mentioned in nonlinear Schrodinger equation to compute
approximate solutions. The grow of modulation instability is also
studied by [3, 4, 8] at high wave length . Furthermore, nonlinear
Schrodinger equation for light waves has been studied by [5, 8, 9,
11] at phase velocity equal to the velocity of light. Others studied it at
the phase velocity which is greater than velocity of light and not even
closetoit, [11].

However, there is no analytical formula for nonlinear Schrodinger
equation coefficients which includes the phase velocity between

(w/k=c) and (wlk>c), Hence, the main objective of this research
is to estimate analytical relation for nonlinear Schrodinger equation
coefficients. This would help to follow the growth on the modulation
instability and soliton propagation in the non-collisional
homogeneous plasma at high temperature for the range phase velocity

(wlk=c) , Wwhose linear Landau damping is small value
exponentially or not existing .

Theoretical Aspect:

To solve the problem, the relativistic Vlasov equation and
Maxwell equations are used. The equations are written down in the
dynamical frame of reference where the coordinate x’ and t' are
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connected with the coordinate x and the time t of the laboratory frame
of reference using Lorentz's relation as follows:

4 ! U 9
X =e(x—ugt); t' = e(t—?x) (D
where € = (1 -=] and v 4 is the group velocity of the high

frequency linear waves in the laboratory frame of reference .
All the values of the equations are presented by the formula

FFO+ Y 0 F) €0 exp [I(KX — w't)] (2)
n=1
=1
Where F is the unperturbed meaning of the function F. k’ and w’
are the wave vector and the frequency of the linear waves in the

dynamical frame of reference , i = v—1, { < 1 is the small parameter
and

§=, T=3qt 3)
In the laboratory frame of reference the unperturbed distribution
function of the particles is taken as the relativistic Maxwell function .

The mathematical transformation used in [2; 8; 12] are adopted to
obtain the equation for the first harmonic of intensity of electric field

in the form:
0E  9%E s T EE)]?
._ e 2 -_ ! =
16r+Pa§2 + q|E]| E+1_[pvj_oo T d¢E=0....(4)

where (pv) denotes the Cauchy principle value , the term which
included the parameter (s) depending on the nonlinear Landau
damping .

The nonlinear Schrodinger equation coefficients take the
fallowing formulas :

_1f,2 0% o) (0e)7!
P_Z[Vg6w2+2Ug0m6k+6k2](0m) - (5)
g=ReQ ; S=IMQ .o, (6)
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6 C(52) dw
0= () ()" =k (0-2(2) ) )

3p,p kepd, 2P, ke, of,, (B)
L ,k,5 — 2 4 d3 z Mol oL _ oL Oc )
(ko) =3 2mecof d*p( b — oo~ psaian ) op, @

Q:|:L(a)’k’52)_|\/|2(a),k)_Nz(w,k,52):| (8_8)_ ......... )

r
pOL a.l:O()' ( p)

M(w,K)= 4ze3c|d3p—2b 2002 0
(@) ; & "ox o, 40
_ 3 3 pold‘(c afO(r(E))
N(a),k)—;47zeac_[ d?p NG o a1)
I’
oke of,, (P)
C(2)=> 4ne?|d?3 O A e 12
() =2 2Jdtp—C . a2)

where o : is the particle type ; kand w are the wave vector and

the frequency of the Langmuir waves ¢ =&(o,x) is the

longitudinal dielectric constant of non-collisional homogenous plasma
. fos(P) is the unperturbed meaning of relativistic Maxwell
distribution  function ; p, =+/p%c? + mic* the total energy of
particle a p its momentum ; m, : the rest mass.
Sw 2 2 _ .2
6z =%; 0A= dw — 6kv,; A= w — kv,; P,. =Po— Pz -

A solution of the nonlinear Schrodinger equation (1) is unstable if
the Lighthill's condition (Pq > 0), so the small deviations condition
lead for strengthening the pulses and wave packet pressure.

The maximum value of the growth rate of the modulation instability
for the perturbation in the identical direction with the direction of
nonlinear wave propagation take the following formula:

Yoa = (@ +s)Y2E,
and the wave number for the perturbation is equal:

uﬂd&iﬁ\ dss
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Kmax = [(qz + SZ)/Pq]l/ZEO
If the Lighthill's condition was satisfied and |q| > |s|, strengthening
of the pulses occurs and an increase in pressure on the packet wave, so
the nonlinear Schrodinger equation (4) can be solved in the form of
Soliton [8, 11] :

E = (2E¢)"2sech[Eq(q/P)Y2(x — wt)]exp {i [% (x - Kt)

2
— qE(Z)t]} e e (13)
Where: w is the optional constant. In this case w = v .

Taking the integration of the function e(w, k); L(w,k, 6z); M(w, k);

N(w, k, 6z); C(6z) by angles in spherical coordinates of space
momentum , so that the oz-axis is identical with the direction wave

r
vector k. Then, taking the integration by parts, and in light of the
distribution function which describes the plasma equilibrium (the
relativistic Maxwell distribution function) (see[11]), we are able to
express these values by the following functions [10]:

exp(-au,) du,

G 2 ; G = G(O) 14
(%) = xj(x Dul (%) = (@, %)....4)
where:

(x=2,02) ;z=wlkc;u, = pOZ: 1+u? ;u:%;a:mcle

The above-mentioned functions (14) are used in the linear theory
of plasma [10]. Yet, these functions will be applied to the non-linear
theory of plasma to find out analytical relations for Schrodinger
equation coefficients which include values of phase velocity that are
greater than or equal to light velocity.

In order to complete the calculations, we should find the integration
in (5) so that we get the waves of light (x=2=1),
Ga,z=1) = 2K, ()

where: Ky (@) MacDonald zero order function [1] .
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While taking the integration of non-light waves (x=1) requires
special treatment as it is difficult to calculate it in a general form, for

(0)
that we express the function G (e, %) in the following form:

G (e, X) = —xu|F * explap) — F~ eXp(=d) bovvvoerrrrrerrerreee (L5)
where:

= [exploatuy £ )y £ ) 2 5 = @ox)

After taking derivative of a function F* by a variable ¢, an

(0) (0)
integration by the variable Yo then G™(a,2) and G (a,072)
taking the form:

z+1
6(a,2) 'n[ﬁ) costeh) _”(sin(aﬂ) J*Z[ JJ (5)( j "
G(O)(a,éz) In (1+5z) ch(adp) ish(adp) 5258 olS) . |dg...nn.
where:

p=@ -9 op=@0-62°)""; L =sin[fla-&)];1, =sh [5B (@~ &)]

By using function expansion Ko (S) [1]
_ (&274)" (&*1am (&
Ko (&) = (In[gj ]Z;) 7 mZ; iy’ [;1/ kj...(l?)

_ (0)
(Euler constant: y =0.577216 ) can be expression G (e, %)

G"(a,x) =G (a,x) + A" G(a, X)
where:

z+1
6 (@,2) '”(ij(o‘/’) _ﬂ[sin(aﬁ)}_z( 25 JI In(gj_ (11]d§ -
Ga,&)) n £1+5z] ch(@sp) ish(asp) —szep M) T, A
1
&) © @ ) (O
Go'(x2) |_ 9 [Gy (@) ; G (@2) |_ 0" [Go'(a2) +[ 28 jj[ln( ]][ jdg o)
Gé“(a,&z) Oa Géo)(a’ﬁz) GO(Z)(C(,(gZ) oa’ Géo)(a,éz) 5188 e
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® 0 5@ @ O s, 3, 50m(1
G/ (a,z):a—GO (a.2) ; G (a,z)+FGO +—zﬂ'[ln : I, d& ..(18—c)
[24 o

A(n)G(o)(a,Z) ~ Zﬂ a ) |ﬂ§ N=01234.

(A‘m)G“”(a,é‘Z)}_2[—525ﬁJ!A (_5)(h6ﬂ§j *{m-012 ].(19)

oA K (&)
0¢

AP K(&)
4

AV K(E)= Ko(f)—ln(g ; AVK(E) =

PAVK(E) 1

A(Z) K (5) 662

ln@ M +6K(&) ; A9 K (&) = )

PN K(E) 3
7 8| (5] N +5,K(&);

M =const. ;N = const. ; A% K(0) = A K(0) = 6,K(0)= 6,K(0) = 5,K(0) =0

AYK(E) =

(n)
The exactly form of the function AT K(S) can be found in equation
@an.

After that we will take the integration in equations (18), the values of
Gém) (@,52), Gén) (e, Z)take the following forms:
G, z) = Zz(ln [%) —y— g(a,B)J +7z(z —1)sin(apf) + acos(af).(20)
GP (e, 2) = p{-2z f () + (2 —1) cos(@p) —asin(apf)}........ ()
G (@, 2) = {22 9(@p) + 7 (2 + 2)(2 ~1)* sin(ap) - (a+ b) cos(af)} + Z(In[%] - g(a/)’)j (22)

G e, 2) = ,83{22( f(af) - iﬁj + % (z+2)(z-1) cos(@p) + (a+b)sin(ap)}- 24 f (ap)..(23)
Qa,

G¥(a,2) = B {22(ap)? + (2 —3)g(aﬂ))+%(z ~1)%(322 + 9z + 8)sin(af) +

[a + b(l— %(z2 —1))} cos(@p) -+ %(In (a - g(aﬂ)j ................................. (24)
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G (a,62) =i mexp(- adph)+ lnﬁ+ g chh (asp)+ (nHm(EJ - yj _
[04

—0L

2In(258)ch(adB) + E, (- asp)exp(asp) E; (asp)exp(- adp)]........(25)

GO (a,512) =inspexp(— adp)+ 5,3|nt g i}sh (asp)+

5 250[E, (- adB)exp(adp)—E; (asp)exp(— adp) - 2In(258)sh(asp)]..(26)

G (a,82) =i 5B exp(— a5p)+ 5p° Inﬁf g ;jch (e5p)+
5266°[E,(- asp)exp(adp) +E; (asp)exp(- asp)-2In(25p)ch(asp)].(27)

where:
a=(z-1)In(z-1)+(z+1)In(z+1)-2zIn(2) ;b=27(y-0.5In(z +1)-0.5In(z-1))

Ei(—x):Tt‘le‘dt ; Ei*(x):.x[e‘t‘ldt . g(x)=—-Ci(x)cos(x) —si(x)sin(x);

f(x) =Ci(x)sin(x) —si(x)cos(x) ; si=Si(x)-x/2;
Si(x) = It‘lsin(t) dt ; Ci(x)=y+Inx +I(cos(t) Dt tdt.
_mc? «1

At high temperature ( T ) , the functions become as:

(n) (n)
A"G(a,7) and A7G(e,67) can be neglected because it has very
small and limited values. The following duo evaluations of these
functions have been obtained by taking the integration by parts of the

equation (19):

A"G(ar, 2)| < min {4z AVK (a)|fin=012,34..(28 - a)

AVK (a)|; 22(ap)’

A9G(a, 5 2)| < 25 Z|AVK (@)|(ch(@ ) ~1) ;oo (28—D)
AYG (e, 8 2)| < 25 28BAVK ()| Sh(@SP) 3vvvvvvveen (28 -¢)
A9G(ar, 8 2)| < 25 258°|APK ()| ch(@f)....covov.n. (28—d)

It should be taken into account that the value in the downomnater
of the relativistic Maxwell distribution function [11] at high

temperatures will be as follows:
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_ Analytical Study on the Modulation Instability of the Relativistic Plasma ISSN : 2410-7727
[ )

(20K, (@) = A+l 45V R QP e, (29)
Based on equations (19) and (29) and duo evaluation of the functions

(n) (n)
A"G(a,7) and ATG(a, 2) the relations of the values
&(w,k), L(w,k,02), M(@,k), N(w,k,52), C(52) of relativistic
plasma at high temperatures (a(( 1) can be written as follows:
glw, k) =1+ Z; a —%ZE Za(ZGéo) (@,2)-2aG® (a,2) + 2’G{ (a, Z))...(30)
1(Z ? € 2 1 3) 1
L(w,k,62) == =% () [dG()(a 2)-hG¥(a,z) - az GP(a,2)+

8\ kc mc

0 0° 0°
C¥(a,2)+r—GP(a,z t G(3) 2)-wW—G{(a,2)+
P— p (a,2) P (a,2)- P (a,2)- P (a,2)

v 2 60 ()~ L &e& GO (0, 21 1B (@ D) e .(31)
0z a
_1,ea’ o, 522 @ @ (-1 &
M{(@.k) 4Z mc kc {a 47 (G (@,2)=Go ™ (ax )) 4z oz
(¥ (e, 2) -G (a, z))—1 52a’2 (GO(a.2)-G® (@, 2) oo (32)

27 -37%51+461

e a
N(o.k,62)=-2;— 1+05 G (a,2) -G (a,2))-05
(@koz)= P me 2{ az @*(6 (@) -6 (@) (z-512)°

51(1-67°)

(2-62)° 6(@.62)-aGP (@,62)).......(39)

(69(@,2)-a2 6P (a,2))+05

aoz

C(o2)= ws(a—( 7

D(zeg,"’ (a0, 52) — 20GP (a0, 5 2) + a’GP (e, 8 2))....(34)

@y

Z, =—
p 2 .
where: ke o, = f”; = plasma frequency , e: is the
electron charge and n: is the plasma density m: is mass of particle and

the parameters [d,h,l, RAR y,&e&,n) are algebraic functions in

G (n)
Z and 92 The functions G (@, Z) G(O) (a,612)

in equations (20)- (27).
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In the two limiting cases, the forms (30)-(34) become as:

The phase velocities are greater than velocity of light and not even
very close to it :

All the functions included in the defined values &(@K),
L{ok,627) M(@,k) N(@k 62) ang C(62) gre related with the
parameters (@5) or (@9B) 1y this limiting case , “PKL ang @91
., and by using the following relations [1]:

) ~ o) (_l)n X2n+l . (
SI(X)_,]Z:;‘(Zn+1)(2n+1)! - Ci(x) = 7+Inx+z

)n 2n

2n(2n)!

n

n.n!

{Ei(—x) ;Ei*(X)}=7/+In x+i{1; (_1)n} X

the following form has been calculated according to the evaluation
of the equation (28), and (30) — (34):

s k) =1+Z2a ( '”(Hlj‘lJ
2 z-1

2 2 4 2 2 _
ReL(a)k5z)_Z( e Jaa{ 4287 30z -46z°+8  47°-1

+
8 kmc? (z-512)° 3(z2-1)? (z-512)?
L9277 ﬂ2_2525ﬁ‘4 1+52)
3(z-52) (z-62)" \1-6z

2 -27'672-27°52*+82%67* -7262" + 46 7° —262| (z+1)}

(z-62)* z-1
ImL(a)ké‘z)_%( p[ j 3%exp(—a5ﬂ)

2
M(a)k)_— Do _Zl[z+1j_3zz_z
ke z-1 z° -1
-2
Re N(o,k, 52)__(_') & 2 {52—22 1 5258 In[1+5zJ+
2 mc

c z-5z 2(z-52)° \1-6z
1272°+52-32°512 In(z+lj
2 (z-512)° z-1
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T @ e ,8256°
2 (kcfy mc  z-6z

Im N(w, k,52) = exp(— asp)

ReC((Sz)=a)§o{1—;5zln[i§g]+F ; ImC(cSz)=0.57zw§a52exp(—a5ﬂ)
o, 1822 e, é‘kuTi ((|5a)|((§kc
Where - 2 r[;iz .................... |5co| ok

4me?ng; - — .
Wpi = /T,l ion plasma frequency ,rp;: Debye radius ; v;: ion
sound velocity .

It is the same values that have been obtained by Wahdain and
Daraigan, 2014 [11]

w
l1=—=
The phase velocities are equal to the velocity of light (k¢ ) :

In this case first we can find the approach solutions of the values
(k) Llokoz) M(ok) N(@kodz) 409 C002)of the

variable (aﬂ ” 1) according to the equations (30) -(34) , and then we
can

put Z=1 and substitute in the relations (5) - (8) which obtain the
following coefficients::

2
o' =wan(185/a) ngc(loéln(l.%/a)—‘;

56 3c2 2 3
P =- - 2
6 B w

q [ejz Ll g T4, T4
= — | @
—-s) \mc 5+,

In(0.89/a)[In(1.85/a)]
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The above-calculated coefficients correspond to the coefficients
nonlinear Schrodinger equation obtained by Wahdain and Daraigan,
2014 [11].

Discussion and Conclusions :

In this study, we have found the analytical formula of the
coefficients of nonlinear Schrodinger equation covers all ranges of
phase velocity which are greater than or equal to light velocity

(@/k= C). With the help of these, we can trace the growth of the
modulation instability and soliton propagation in the non-collisional
homogeneous plasma at high temperature.

The derived relations (30) - (34) are suitable for numerical
calculations because they contain known simple and special functions.

It is clear that the relations which have been obtained from (30) -

(34) in both limiting cases (@ (1) and (z=1) tend to match with
the obtained results in [11].

We have traced the numerical values 9 and S for the ratios of

the variable (aﬂ)which are shown in Figures (1) and (2) , where we
have inferred that the modulation instability occurs at all ranges of
phase velocity which are greater than or equal to light velocity

(w/k>c)
mcey 2 (TTlC)2
—_— [0} i (— wy,S
( e ) 4 e b
6
gt
3
\1 04
off af
0 5 10 > 0 5 10 P
Fig. (1): Relationship between ¢ and Fig. (2): Relationship between S and
06,8 , electron-ion plasma. 0(/3 , electron-ion plasma,.
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We also arrived to the conclusion that the modulation instability
takes a maximum value of the growth rate at phase velocity when it is
close to the velocity of light. Meanwhile, the modulation instability
growth rate of the long-wave is decreased when the temperature
increases, and vice-versa in regard with short waves.
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